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Abstract. The asymptotic behavior of the solution of a nonlinear problem describing the  
bio-heat transfer in biological tissues is analyzed. Our model, based on Pennes’ bio-heat transfer 
equation, with a temperature-dependent blood perfusion term, allows us to predict the effective 
temperature of such a complicated structure. 
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1. INTRODUCTION AND SETTING OF THE PROBLEM 

The purpose of this paper is to rigorously justify, using the homogenization 
theory, a nonlinear heat transfer model in living tissues. The model, based on 
Pennes' bio-heat equation, with a temperature-dependent blood perfusion term, can 
be applied to predict the temperature in such a complicated structure. 

The heat transport in living tissues is a complex process involving multiple 
mechanisms, such as heat conduction in tissues, heat transfer due to perfusion of 
the arterial-venous blood through the pores of the tissue (blood convection), 
metabolic heat generation and external interactions, such as electromagnetic 
radiation emitted from cell phones, etc. Bio-heat transfer models have significant 
applications in many clinical and environmental sciences. In particular, the heat 
transfer mechanism in biological tissues is important for therapeutic practices, such 
as cancer hyperthermia, burn injury, brain hypothermia resuscitation, disease 
diagnostics, cryosurgery, etc. 

During the last two decades, the mathematical modeling of temperature 
distribution in such tissues have attracted the attention of many researchers and a 
number of significant steps towards developing a bioheat transfer theory have been made. 
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It is a very difficult task to establish an appropriate physical model for the 
heat transport in the human body. In 1948, based on experimental observation, H. 
H. Pennes (see [18]) proposed a simple linear mathematical model for describing 
the thermal interaction between human tissues and perfused blood, taking also into 
account the effects of the metabolism. Later on, alternative models for describing 
the heat exchange between tissues and blood have been developed (see [5], [12], 
[20] and the references therein). The general form of Pennes original equation is 
the following one: 

 ( )– – ,b b e m
uc K u Wc u u Q Q
t

∂
ρ = ∆ + = +

∂
 

where ρ is the density, c and cb are specific heat of tissue and blood, K is the 
thermal conductivity, ub is the blood temperature, W is the mass flow rate of blood 
per unit volume of tissue, Qe is the power deposition term and Qm is the metabolic 
heat generation term. Here, we need to know the arterial blood temperature ub. 
Pennes compressed all of the perfusion information into the term Wcb(u – ub). He 
checked the validity of this approximation by comparing the temperatures 
predicted by his equation with the experimentally measured temperatures in the 
human forearm. In his approach, the blood perfusion term W was adjusted until the 
predicted temperatures agreed well with the measured temperatures.  

Most of the papers dealing with the problem of modeling the temperature in 
biological tissues assume a constant rate blood perfusion within each type of tissue. 
However, several experiments and numerical simulations have shown that the 
physiological responses (blood perfusion and metabolism) in living tissues are 
temperature dependent (see [15]). Therefore, by considering variable metabolic 
heat generation and variable blood perfusion in Pennes' equation, we get a more 
accurate description of the heat transfer process in living tissues. 

To obtain the temperature distribution given by such a complicated heat 
transfer model we need to find the solution of a time-dependent partial differential 
equation in a complex geometry, involving a special nonlinearity due to the 
perfusion term and different material properties of the tissues. The temperature is 
highly nonuniformly distributed in space and time. Of course, some approximation 
is clearly needed in the bioheat transfer calculations. In such a situation, an 
asymptotic analysis becomes necessary. 

The homogenization method provides a general framework for obtaining the 
global behavior of such a complicated structure and for getting its macroscale 
properties, eliminating the dificulties related to the explicit determination of a 
solution of the problem at the microscale and offering a less detailed description, 
but one which is applicable to much more complex systems. 

Let Ω be an open bounded set in ( )2n n ≥\ . For the model we intent to 
analyze, i.e. the problem of bio-heat transfer in microvascular tissues, we can 
consider that Ω is an ε-periodic structure, consisting of two parts: a solid tissue part 
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Ωε of temperature uε and small regions of blood / εΩ Ω  of a certain temperature. ε 
represents a small parameter related to the characteristic size of the blood regions.  

The nonlinear problem studied in this paper concerns the nonstationary heat 
transfer in the solid tissue part, in contact with the blood regions. We shall assume 
that we have some external thermal sources f inside Ωε and some nonlinear sink 
term describing heat loss (cell-destruction energy, generated, possible, by special 
chemical reactions), given by a nonlinear function β. Also, we shall suppose that 
this complicated microstructure is dynamically evolving and the blood perfusion is 
temperature dependent and we shall take this into account by imposing a nonlinear 
dynamic boundary condition on the boundaries of the blood zones. 

If we denote by (0, T) the time interval of interest, we shall analyze the 
asymptotic behaviour, as 0ε→ , of the solution of the following problem: 

 ( ) ( ) ( )– , , in 0, ,uc K u u f t x T
t

ε
ε ε ε∂

ρ = ∆ +β = Ω ×
∂

 (1.1) 

 ( ) ( ) ( )– , on 0, ,b b
u uK c W u u u S T
v t

ε ε
ε ε ε ε∂ ∂

+ αε = ε ×
∂ ∂

 (1.2) 

 ( ) ( )00, , inu x u xε ε= Ω  (1.3) 

 ( )0, on 0, .u Tε = ∂Ω×  (1.4) 

Here, ν is the exterior unit normal to ( )( ) ( )2 2 0 1
0, 0, ; , ,f L T L u HεΩ ∈ Ω ∈ Ω  

( )10, 0, 0, 0, 0,b bc K c u Hε> > α > > ρ > ∈ Ω  and S ε  is the boundary of the blood 
regions. We shall assume that the nonlinear functions β and W are given (see 
Section 2). For important examples of such functions, see [16]. 

The existence and uniqueness of a weak solution of problem (1.1)-(1.4) can 
be settled by using the theory of nonlinear monotone problems (see Section 2). We 
shall be interested in getting the asymptotic behavior, when 0ε→ , of the solution 
of problem (1.1)-(1.4). Using Tartar's method of oscillating test functions, coupled 
with monotonicity methods and results from the theory of semilinear problems, we 
can prove that the solution of problem (1.1)-(1.4), properly extended to the whole 
of Ω, converges to the unique solution of a new nonlinear problem, defined all over 
the domain Ω, given by a new operator and containing extra terms, capturing the 
effect of the blood perfusion and of the dynamic part of the condition imposed on 
the boundary of the blood regions (see Section 2). 

The results of this paper constitute a generalization of some of the results 
obtained in [12], by considering nonstationary processes, dynamical conditions on 
the boundaries of the blood regions and a nonlinear sink term acting inside the 
solid tissue, modeling cell-destruction energy, which can be of huge importance, 
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for instance, in destroying malignant cells by hyperthermia (see [20]). Also, we 
generalize the results in [24], by considering temperature-dependent blood 
perfusion processes. 

From a mathematical point of view, problems similar to this one have been 
considered by D. Cioranescu and P. Donato [6], D. Cioranescu, P. Donato and  
H.I. Ene [8], C. Conca and P. Donato [11], C. Conca, J.I. Díaz and C. Timofte [10], 
H. Ene and D. Polisevski [14], C. Timofte [21], [22], [23], [24], A. Bourgeat and  
L. Pankratov [3], L. Pankratov, A. Piatnitskii and V. Rybalko [17]. 

The plan of the paper is as follows: in the second section we introduce some 
useful notations and assumptions and we give the main convergence result of this 
paper. For obtaining it, we need some preliminary results, which are given in 
Section 3. Also, this last section is devoted to the proof of the convergence result. 

2. ASSUMPTIONS AND THE MAIN RESULT 

Let Ω be a bounded connected open subset of ( )2n n ≥\ , with ∂Ω  of class 
C2 and let [0, T] be the time interval of interest. Let Y = [0, l1[×…[0, ln[ be the 
representative cell in n\  and F an open subset of Y with boundary F∂  of class C2, 
such that F Y⊂ . 

We shall denote by ( ),F ε k  the translated image of εF by the vector εkl, 

( )1 1, 1 ,...,n
n nk l k l∈ =k k] . 

 ( ) ( ), lF Fε = ε +k k . 

Also, we shall denote by F ε  the set of all the blood regions contained in Ω. 
So 

 ( ) ( ){ }
n

, , .F F Fε

∈

= ε ε ⊂ Ω
k

k k
]
∪  

Let \ Fε εΩ = Ω . Hence, εΩ  is a periodic structure with blood regions of the 
same size as the period. 

We shall use the following notations: 

 \Y Y F∗ = , (2.1) 

 
Y

Y

∗

θ = . (2.2) 
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Also, we shall denote by εχ  the characteristic function of the domain εΩ  and 
throughout the paper, by C we shall denote a generic fixed strictly positive 
constant, whose value can change from line to line. 

As already mentioned, we are interested in studying the asymptotic behavior, 
as 0ε→ , of the solution of the parabolic problem (1.1)-(1.4).  

We shall consider that the function β in (1.1) is continuously differentiable, 
monotonously non-decreasing and such that β(0) = 0. Moreover, we shall assume 
that there exist 0C ≥  and an exponent q such that 

 ( ) ( )1 ,qv C vβ ≤ +   (2.3) 

with ( )0 / – 2 if 3 and 0 if 2q n n n q n≤ < ≥ ≤ < + ∞ = . 

For the blood temperature buε  we shall assume that ( )1
bu Hε ∈ Ω  and 

( )1b H
u Cε

Ω
≤ . Moreover, if we denote by ( ) ( ) ( )– bg v W v v v= , where bv  is a 

given constant, we assume that g is continuously differentiable, monotonously non-
decreasing and satisfies suitable growth conditions (see (2.3)). Indeed, for some 
ranges of temperatures which are of interest for therapeutical practices (see [16]) 
and some special type of tissues, like muscle, for instance, we may assume that the 
term modeling the blood perfusion contribution is, from a mathematical point of 
view, given by such a nonlinear function g. 

Remark 1. The results of this paper will be obtained for the case 3n ≥ . All of 
them are still valid, under our assumptions, in the case in which n = 2. Of course, 
for this case, ( )/ – 2n n  has to be replaced by +∞ . 

Also, let us notice that due to the compactness injection theorems in Sobolev 
spaces, it would be enough, with the same reasoning as in the paper, to assume that 
β satisfies, for 3n ≥ , the growth condition (2.3) for some ( ) ( )0 2 / – 2q n n≤ < +  

For n = 2, ( ) ( )2 / – 2n n+  have to be replaced by +∞ . 
The existence and uniqueness of a weak solution of (1.1)-(1.4) can be settled 

by using the classical theory of semilinear monotone problems (see [1, 4, 3, 21 
24]). As a result, we know that there exists a unique weak solution 

 [ ] ( )( ) ( )( )1 2
10, ; 0, ; ,u C T H L T Yε ε ε

∂Ω∈ Ω Ω∩  

with 

 ( )( )2 20, ;u L T L
t

ε
ε∂

∈ Ω
∂
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and 

 
( ) ( )( )2 20, ; .
u

L T L S
t

ε
ε

∂γ
∈

∂
 

Here, ( )1H ε
∂Ω Ω  is the space of elements of ( )1H εΩ  which vanish (in the sense of 

traces) on ∂Ω , ( ) ( ){ ( ) ( )1 2 2
1 – , vY v H v L R L

n
ε ε ε ε

∂Ω ∂Ω
∂

Ω = ∈ Ω ∆ ∈ Ω ∈ ∂Ω
∂

 and 

( ) ( )1 2: H L Sε εγ Ω →  is the trace operator with respect to S ε , which is continuous. 

Moreover, for a function φ defined on ε∂Ω , Rϕ  denotes its restriction to S ε . 
The main convergence result of this paper is given by the following theorem: 

Theorem 1. One can construct an extension P uε ε  of the solution uε  of the 
problem (1.1)-(1.4) such that P u uε ε ¸  weakly in ( )( )2 1

00, ;L T H Ω , where u is the 

unique solution of the following nonlinear problem: 

 

( ) ( )

( ) ( ) ( )

( )
( ) ( )

2

, 1

0

1 –

– , , 0, ,

0, , 0, ,

0, , .

n

ij
i ji j

b b

u uc q u
t x x

F
c W u u u f x t T

Y

u x t T

u x u x x

=

∗

 ∂ ∂
ρ + δ + β + ∂ ∂ ∂
 ∂+ = ∈Ω ∈

 = ∈∂Ω ∈
 = ∈Ω

∑

 (2.4) 

Here, 

 
F

c Y ∗

∂α
δ =

ρ
 

and ( )( )ijQ q=  is the homogenized matrix, whose entries are defined by: 

 1 dj
ij ij

iY

q K y
yY ∗

∗

 ∂χ = δ +
 ∂
 

∫  (2.5) 

in terms of the functions , 1,...,i i nχ = , solutions of the cell problems 
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( )

– 0 in ,

0 on ,

– periodic.

i

i i

i

Y
y

F

Y

∗ ∆χ =

∂ χ + = ∂ ∂ν
χ


 (2.6) 

Thus, in the limit, when 0ε→ , we get a constant coefficient heat equation, 
with a Dirichlet boundary condition and with extra-terms, coming from the well-
balanced contribution of the blood perfusion term and of the dynamic part of the 
condition imposed on the boundary of the blood regions. 

Remark 2. There exists a unique solution of the macromodel problem (2.4). 

3. PROOF OF THE MAIN RESULT 

As already mentioned, there exists a unique solution for the nonlinear 
problem (1.1)-(1.4), 

 [ ] ( )( ) ( )( )1 2 20, ; 0, ; ,u C T H L T Lε ε ε
∂Ω∈ Ω Ω∩  

with 

 ( )( )2 20, ;u L T L
t

ε
ε∂

∈ Ω
∂

 

and 

 
( ) ( )( )2 20, ;
u

L T L S
t

ε
ε

∂γ
∈

∂
 

For getting the effective behavior of our solution uε , we have to pass to the 
limit in the variational formulation of problem (1.1)-(1.4). To this end, let us 
introduce, for any ( ) , 1sh L F s′ ′∈ ∂ ≤ ≤ ∞ , the linear form h

εµ  on ( )1,
0

sW Ω defined 
by 

 ( )1,, d ,s
h o

S

xh W
ε

ε  µ ϕ = ε ϕ σ ∀ϕ∈ Ω ε ∫  

with 1/ 1/ 1.s s′+ =  It is proven in [6] that 

 ( )( )1,
0strongly in s

h h Wεµ →µ Ω ′, (3.1) 
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where 

 , d ,h h x
Ω

µ ϕ = µ ϕ∫  

with 

 ( )1 d .h
F

h y
Y

∂

µ = σ∫  

If ( )h L F∞∈ ∂  or even if h is constant, we have (see [8]) 

 ( )–1,strongly inh h Wε ∞µ →µ Ω . 

We denote by εµ  the above introduced measure in the case in which h = 1. 
Also, for obtaining the limit behavior of our homogenization problem, let us recall 
another result from [10]. 

Let H be a continuously differentiable function, monotonously non-
decreasing. We shall suppose that there exist a positive constant C and an exponent 
q, with ( )0 / – 2q n n≤ < , such that ( )1 qH C v≤ + . If we denote by 

 
( )

2 ,
– 2

nq
q n n

=
+

 

one can prove (see [10]) that for any z zε ¸  weakly in ( )1
0H Ω , we get 

 ( ) ( ) ( )1,
0weakly in qH z H z Wε Ω¸ . (3.3) 

Let us consider the variational formulation of problem (1.1)-(1.4): 

 ( ) ( )
0 0

0 0

0 0

d d d d

d d – d d

d d d d ,

T T

T T

b bS
T T

S

c u x t K u x t

x t c W u u u x t

u x t f x t

ε ε

ε ε

ε ε

ε ε

Ω Ω

ε ε ε

Ω

ε

Ω

ρ ϕ + ∇ ⋅∇ϕ +

+ βϕ + ε ϕ +

+αε ϕ = ϕ

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

�

�

 (3.4) 

for any [ ]( )0 0,C T∞ εϕ∈ ×Ω . Here, we have denoted by the partial derivative with 

respect to the time. 
As already mentioned, by classical existence and uniqueness results, we 

know that there exists a unique weak solution of (3.4). Taking it as a test function 
in the variational formulation of our problem and using our assumptions on the 
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data and Cauchy-Schwartz, Poincaré's and Young's inequalities, we can obtain 
suitable energy estimates, independent of ε , for our solution (see [2, 3, 10, 19, 21]). 

In order to prove our main result, we need to extend the above solution to the 
whole of Ω. Using classical extension results (see [9]) and denoting by P uε ε  such 
an extension of uε , one can see that P uε ε  is bounded in ( )( )2 1

00, ;L T H Ω  and 

P u
t

ε ε∂
∂

 is bounded in ( )( )2 20, ;L T L Ω  (see, for details, [10, 21 24]). So, by passing 

to a subsequence, we have 

 P u uε ε ¸  

weakly in ( )( )2 1
00, ;L T H Ω  and strongly in ( )( )2 20, ;L T L Ω  and 

 P u u
t t

ε ε∂ ∂
∂ ∂

¸  

weakly in ( )( )2 20, ;L T L Ω . 

It is well-known by now how to pass to the limit, with 0ε→ , in the linear 
terms of (3.4) defined on εΩ  (see, for instance [10] and [21]). Also, recall that θ  is 
the weak-* limit in ( )L∞ Ω  of εχ . Thus, we get: 

 
0 0

d d d d ,
T T

u x t u x t
ε

ε

Ω Ω
ϕ → θϕ∫ ∫ ∫ ∫� �  (3.5) 

 
0 0

d d d d ,
T T

K u x t Q u x t
ε

ε

Ω Ω
∇ ⋅∇ϕ → + θ ∇ ⋅∇ϕ∫ ∫ ∫ ∫  (3.6) 

 
0 0

d d d d .
T T

f x t f x t
εΩ Ω

ϕ → θ ϕ∫ ∫ ∫ ∫  (3.7) 

Let us see now how we can pass to the limit in the nonlinear terms in (3.4). 
For the third term in the left-hand side of (3.4), let us notice that, exactly like in 
[10] (see (3.3)), one can prove that for any z zε ¸  weakly in ( )1

0H Ω , we see that 

( ) ( )z zεβ →β  strongly in ( )qL Ω , where 
( )

2
– 2

nq
q n n

=
+

. Therefore, we have 

 ( ) ( )
0 0

d d d d .
T T

u x t u x t
ε

ε

Ω Ω
β ϕ → β θϕ∫ ∫ ∫ ∫  (3.8) 

For the other terms in (3.4), using the convergence (3.2) written for h = 1, 
and the fact that 
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 ,b bu uε ¸  

weakly in ( )1H Ω , we obtain that 

 ( ) ( ) ( ) ( )– d – db bS

F
W u u u x W u u u x

Yε

ε ε ε

Ω

∂
ε ϕ → ϕ∫ ∫ , 

and 

 d d .
S

F
u x u x

Yε

ε

Ω

∂
ε ϕ → ϕ∫ ∫� �   

Hence, integrating in time and using Lebesgue's convergence theorem, it is 
not difficult to see that 

 ( ) ( ) ( ) ( )
0 0

– d d – d d
T T

b b b bS

F
c W u u u x t c W u u u x t

Yε

ε ε ε

Ω

∂
ε ϕ → ϕ∫ ∫ ∫ ∫ , (3.9) 

and 

 
0 0

d d d d .
T T

S

F
u x t u x t

Yε

ε

Ω

∂
αε ϕ →α ϕ∫ ∫ ∫ ∫� �  (3.10) 

Putting together (3.5)-(3.10), we can pass to the limit in all the terms in (3.4) 
and we obtain exactly the variational formulation of the limit problem (2.4). As u is 
uniquely determined, the whole sequence P uε ε  converges to u and this completes 
the proof of Theorem 1. 
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