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Abstract. The effective mass is calculated in two different approaches: the Werner-Wheeler 
method and the cranking model. In both cases the nuclear shape parametrization is given by two 
spheres of different radii smoothly joined with a third toroidal surface that describes a neck. The wave 
functions required to compute the effective mass in the cranking model are obtained with a recent 
version of the superasymmetric two-center shell model that solve a Woods-Saxon potential. The 
difference between the results given by the two approximations are presented. 

1. INTRODUCTION 

In most usual theoretical treatments of nuclear fission, the whole nuclear 
system is characterized by some collective coordinates associated with some 
degrees of freedom that determine approximately the behavior of many other 
intrinsic variables. The basic ingredient in such an analysis is a shape 
parametrization that depends on several macroscopic degrees of freedom. The 
generalized coordinates associated to these degrees of freedom vary in time leading 
to a split of the nuclear system in two separated fragments. A microscopic potential 
must be constructed, to be consistent with this nuclear shape parametrization. It is 
known that a nuclear shape can be well characterized for fission processes if the 
following conditions are satisfied [1]: (i) The three most important degrees of 
freedom, that is, elongation, necking and mass-asymmetry, must be taken into 
account. (ii) A single sphere and two fragments should be allowed configurations. 
(iii) The flatness of the neck must be an independent variable. All these conditions 
will be fulfilled in the following. 
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In the present work, an axial-symmetric nuclear parametrization is obtained 
by smoothly joining two intersected spheres of different radii R1 and R2 with a neck 
surface generated by the rotation of a circle of radius R3 around the symmetry axis, 
as displayed in Fig. 1. The surface equation is given in cylindrical coordinates: 
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where zc1 and zc2 define the region of the necking. The meaning of the geometrical 
symbols that depends on the shape parametrization can be understood inspecting 
Fig. 1. This parametrization allows to characterize a single nucleus or two 
separated nuclei. Throughout the paper, the subscripts 0, 1, and 2 indicate the 
parent, the heavy and light fragments, respectively. If S=1, the shapes are necked in 
the median surface characterizing scission shapes and if S=–1 the shapes are 
swollen characterizing the ground-state and saddle points. The generalized 
coordinates used in the following are denoted R = z2 – z1 (elongation), C = S/R3 

(necking) and η = R1/R2 (mass-asymmetry). For large distances between the two 
nascent fragments, the configuration given by two separated spheres is reached. 

2. INERTIA 

In a multidimensional deformation space, where the nuclear shape is 
described by a set of n independent generalized coordinates {qi} (i = 1, ..., n), the 
inertia tensor Bij is defined by the equation of the kinetic energy T: 
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There are different methods of calculation of these quantities. Two of them are 
widely used in nuclear physics, that are, the Werner-Wheeler approximation and 
the cranking model. 

2.1. THE WERNER-WHEELER APPROXIMATION 

In the Werner-Wheeler approximation [2, 3, 4], the flow of the fluid is idealized as 
non-rotational, non-viscous and hydrodynamic. The effective mass can be computed 
within the following formula: 
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Fig. 1 – Nuclear shape parametrization. z1, z2 and z3 are the positions of the centers of circles of radii 

R1, R2 characterizing the two nascent fragments, and of R3 determining the neck, respectively. If s = 1, 
the shape is necked, otherwise the shape is swollen in the median surface. The distance between the 

two centers z1 and z2 determines the elongation R. 

where ( )s zρ  defines the nuclear surface and the origin of z is placed in the center 
of mass. zmin and zmax refer to the two ends of the nucleus along the axis of 
symmetry. The mass density is ( )3

03 / 4m rσ = π , m being the nucleon mass and 

r0=1.16 fm is the radius constant. The shape dependent functions are: 
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Formula (4) is especially useful for calculating X for values of z greater than the 
position of the center of mass while formula (5) addresses values of z lower than 
the center of mass position. 

2.2. THE CRANKING MODEL 

In the adiabatic description of the collective behavior of a nucleus, the 
nucleons are assumed to move in a average deformed potential. Using a 
Hamiltonian that includes pairing interactions, introducing the collective 
parameters qi by means of the Lagrange nultipliers, it is possible to obtain the 
response of the nuclear system for slow changes of the shape from the cranking 
model formula: 
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where H is the single-particle Hamiltonian, ν > and µ >  are single particle wave 
functions, ,vE uν  and vν  are the quasiparticle energy, the vacancy and occupation 
amplitudes of the state ν , respectively, in the BCS approximation, and Pij is a 
correction that depends on the variation of the parameters ∆  (the pairing gap) and 
λ  (the Fermi energy) as function of deformations. The total inertia is the sum of 
the partial values that correspond to protons and neutrons.  Detailed explanations 
are given in Refs. [5, 6]. Usually, the matrix elements of the derivatives of the 
Hamiltonian are replaced by the matrix elements of the derivatives of the potential. 
In this paper, the Rel. (7) will be used to compute the cranking inertia in terms of 
the Woods-Saxon superasymmetric two-center shell model [7, 8]. This model was 
already used to determine the fusion probability for the formation of superheavy 
elements [9]. This version of the two center shell model includes a realistic 
treatment of the dependence of the spin orbit operator in the region of the neck that 
cannot be achieved within the modified two-center oscillator [10, 11, 12]. This 
behavior was evidenced in Ref. [13] where the experimental heights of the double 
fission barrier are very well reproduced. Other recipes to solve a Woods-Saxon 
potential in a two center basis are given in Ref. [14, 15]. 

3. RESULTS 

The effective mass will be computed for fission processes. As in Ref. [16], 
one of the most probable partition in the fission process of 233Th → 98Sr +135Te is 
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selected. In this case, the heavy fragment issued in this reaction is almost spherical, 
while the light one is little deformed, allowing a description in terms of our nuclear 
shape parametrization. 

A way to obtain the sequence of nuclear shapes available for fission is to use 
the least action principle [6]. It is very difficult to treat the three independent 
generalized coordinates in the same time in order to minimize the action integral. 
Some simplifying assumptions must be introduced. As mentioned also in Ref. [17], 
microscopic approaches to fission [18, 19] established that the second saddle point 
is asymmetrical with a value compatible with the observed mass ratio. In the same 
time, in the region of the second barrier, the mass-asymmetry component of the 
inertia tensor is very large [20]. So, the variations of the mass-asymmetry 
generalized coordinate are hindered in this region. On another hand, for 
elongations smaller than that of the outer barrier, the mass-asymmetry component 
of the inertia is much lower. Therefore, up to the second barrier top, the mass-
asymmetry coordinate can be modified without enhancing too much the value of 
the action integral. Moreover, even the deformation energy is less sensitive to 
variations of the mass-asymmetry coordinate in the region of compact shapes. As 
in Ref. [20], this observation allows us to reduce the number of parameters in order 
to rend our problem tractable. Therefore, the evolution of the mass asymmetry 
generalized coordinate will be a priori fixed in the following. It is assumed that the 
ratio 1 2/R Rη =  varies linearly from unity (first barrier top) to the value associated 
with the final mass partition (second barrier top). The mass asymmetry in the outer 
barrier region is deduced by considering that the volume occupied by the light 
fragment equals the final one. 

Along the trajectory, the inertia can be reduced to: 
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where BRR, BCC and Bηη are the diagonal components along the three independent 
collective degrees of freedom and BRC, BRη and BCη are the offdiagonal 
components. If the variation of the mass-asymmetry is apriori determined, then the 
inertia tensor has only three components: 
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because the derivative / R∂η ∂  is known by the variation imposed to η and 
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becomes the inertia along the trajectory. A similar attack of the multidimensional 
problem has been employed in Refs. [20, 21, 22]. 

In Figs. 2, 3, 4, the quantities ( )ELONGATION NECK/ , log /B Bµ µ  and 

( )OFFDIAGONALlog /B µ  are represented in a two-dimensional configuration space 
spanned by the R and C generalized coordinates. The results concerning both 
models are displayed. Some general trends can be evidenced. The symbol µ 
denotes the reduced mass after scission. In these pictures, the inertia elements for 
the family characterized by a fixed variation of the mass-asymmetry shape 
parameter are displayed, as discussed previously, but the emerging observations are 
valid for any mass-asymmetry. Low values of ELONGATIONB  are obtained for small 
C-values. That means, a higher probability to penetrate the barrier can be obtained 
for swollen shapes. On the other hand, very large values of NECKB  and 

OFFDIAGONALB  are found exactly in the region of swollen shapes. This behavior 
suggests that in the region of swollen shapes, the nuclear system must evolves with 
a fixed value of the neck generalized coordinate in order to have very small values 
of /C R∂ ∂ . Also, large values of the inertia are displayed in the vicinity of the 
scission points. The huge values of the inertia in the scission region are mainly due 
to the mass-asymmetry components. That means, the process of changing the 
mass-asymmetry in the vicinity of the scission is hindered. 

In Fig. 2, the variations of the diagonal component ELONGATIONB  of the inertia 
divided by the reduced mass are plotted as function of the elongation and the neck 
parameter. The upper panel is obtained within the Werner-Wheeler method while 
the lower one is given in the cranking framework. For positive values C, the 
nuclear system is necked in the median region, while for negative values the 
nuclear shapes are swollen. For positive C and large values of R, the scission is 
produced. The Werner-Wheeler method predicts very large values of the inertia in 
the region where the scission is produced (R=22 fm, C=0.2 fm–1) while in the frame 
of the cranking approximation the values are much lower. After scission, the 
Werner-Wheeler method gives a inertia that corresponds to the reduced mass while 
the cranking approximation gives a value 1.4 times larger. In the region of swollen 
shapes, that describes the ground state, the inertia obtained within the cranking 
model is up to 10 times larger than that obtained within the irrotational 
approximation. Large fluctuations are obtained in the frame of the cranking model. 
In Fig. 3, the variations of NECKB  are plotted. In this case, the two approaches give 
a similar behavior, that is, the inertia increases strongly in the vicinity of the region 
where the scission is produced. After scission, this component of the inertia tensor 
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reaches zero. In Fig. 4, the off-diagonal component of the inertia is plotted. After 
scission this component becomes zero. The values obtained in the two 
approximations are not very different but some fluctuations can be observed in the 
lower panel. 

 

 
Fig. 2 – The 236U BELONGATION/µ diagonal element of the inertia tensor for reflection–
asymmetric nuclear shapes in the (C, R) plane. µ = A1A2/A0 is the reduced mass of the 
system. BELONGATION/µ is dimensionless. The difference between two contour values  
is 0.2. The upper plot addresses the Werner-Wheeler approximation while the lower  

one concerns the cranking model. Several values are plotted on the plots. 
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Fig. 3 – The 236U log(BNECK/µ) diagonal element of the inertia tensor for reflection–
asymmetric nuclear shapes. The dimension of BNECK/µ is fm4. The di_erence between 
two contour values is one unit. The upper plot addresses the Werner-Wheeler 
approximation while the lower one concerns the cranking model. Several values are  

plotted on the plots. 
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Fig. 4 – The 236U log(BOFFDIAGONAL/µ) off–diagonal element of the inertia tensor for 
reflection–asymmetric nuclear shapes. The dimension of BOFFDIAGONAL/µ is fm2. The 
difference between two contour values is one unit. The upper plot addresses the 
Werner-Wheeler approximation while the lower one concerns the cranking model. 

Several values are plotted on the plots. 
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In conclusion, the inertia is computed in the frame of the cranking approach 
using for the first time the two-center Woods-Saxon model. The model succeeded 
to reproduce approximately the reduced mass of a fissioning system. A comparison 
within the irrotational flow model was realized and the main differences between 
the two approaches are emphasized. 
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